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Abstract—In this review we’re going to examine and compare
the results obtained using three numerical methods for the
equality constrained quadratic programming problem: GMRES,
Schur complement approach and Null Space Method.

I. INTRODUCTION

A quadratic program is an optimization problem with a
quadratic objective function and linear constraints.
The general problem (QP) can be written as the following:

minx q(x) = 1
2x

TQx+ cTx
s.t. Ax = b

where
• Q ∈ Rn,n is a symmetric positive semidefinite matrix
• c, x are vectors ∈ Rn

• A ∈ Rm,n, b ∈ Rm

• m is the number of constraints
Quadratic programs can usually be solved in a finite number
of computations, but the computational cost and time depend
on the characteristics of the objective function and the number
of constraints.
Applying the KKT conditions to (QP), at a minimum x∗ we
obtain the system:

Qx∗ +ATλ∗ = −c
Ax∗ = b

(1)

Introducing the matrix

K =

[
Q AT

A 0

]
(2)

and the vectors

w∗ =
[
x∗, λ∗]T (3)

d =
[
−c, b

]T
(4)

we can rewrite (1) as

K · w∗ = d (5)

Solving (5) we can find a candidate minimum point x∗ with
Lagrangian multiplier λ∗.
If A is full rank and we consider a matrix Z whose columns
form a basis of Ker(A), the reduced-Hessian matrix ZTQZ is
positive definite. On this assumptions, K is non-singular and
it implies that there is a unique solution (x∗, λ∗) for (5).

II. PROBLEM

The quadratic objective function is:

minx∈Rn

n∑
i=1

x2
i −

n−1∑
i=1

xi · xi+1 +

n∑
i=1

xi (6)

with equality constraints:

x1 + x1+K + x1+2K + ... = 1 (7)

x2 + x2+K + x2+2K + ... = 1
...

xK + x2K + x3K + ... = 1

We’ve solved problem (6) obtaining the results reported in the
successive sections, testing our code with parameters n = 104,
n = 105 and K = 100, K = 500. For this latter value of n, the
matrix Q turns out too big, so we transformed it into a sparse
matrix. The reason being that sparse matrices are easier to
store, since the majority of their non-diagonal elements are
zeros.
By inspecting the problem description (7) and the correspond-
ing A matrix, we can observe that it is full rank. We also found
that matrix Q is symmetric positive definite.
Given the considerations made in section I, we conclude that
the matrix K is non-singular (thus invertible) and its intertia
is (n, m, 0).
In order to have a useful metric to compare all the methods,
we’ve used the equations of (1), computing the norm of the
residuals, yield the results:

KKT gradL norm = ||Qx∗ +ATλ∗ + c|| (8)

KKT eq norm = ||Ax∗ − b|| (9)

In particular equation (8) shows how close we are to the
solution and equation (9) show how well we respected the
constraints. In both cases the closer to 0 the norms are, the
higher the accuracy is.

III. FULL SYSTEM FACTORIZATION

This method consists in the decomposition of the matrix K
as K = LDLT /LU , where L is the lower triangular, U the
upper and D diagonal.
However, we can’t use full system factorization in our problem



since the minimum n+m we have is of the order ∼ 104 and this
could cause a fill-in phenomenon. We have therefore decided
to proceed with other methods.

IV. GMRES

In order to solve the linear system (5) without
decomposition, we have used the iterative solver GMRES. At
first we used the parameters tol = 10−6, maxit = 200, on
the problem described by n = 104 and K = 100.
In this way GMRES converged at itera-
tion 115 with elapsed time ∼ 10 seconds
and having KKT gradL norm = 9.9037 · 10−5,
KKT eq norm = 2.9262 · 10−6.
The 1-dimension vector w∗ has, as expected, n + K rows,
since it gives both x∗ (first n rows) and λ∗

w∗ =
[
0.0004 0.0008 0.0011 ...− 1 − 1 − 1

]T
One drawback of the GMRES method is its linearly increasing
cost per iterations, which may become prohibitively large in
practical applications. We have tried with a bigger number of
iterations and a lower tolerance, respectively 2000 and 10−8,
to see if we could reach better results. They are, in fact, slightly
more precise, but the computational time is significantly higher
(∼ 123 seconds). We decided that the increment in precision
was not worth the extra computational time needed to perform
the method, since they are comparable. Thus the following
results were taken having as parameters the ones initially used.

TABLE I
GMRES RESULTS: ELAPSED TIME (S)

n = 104 n = 105

K=100 10.1752 0.2469
K=500 18.2654 0.9434

TABLE II
GMRES RESULTS: KKT GRADL NORM

n = 104 n = 105

K=100 9.9037 ·10−5 2.6841 ·10−4

K=500 2.2275 ·10−4 2.9531 ·10−4

TABLE III
GMRES RESULTS: KKT EQ NORM

n = 104 n = 105

K=100 2.9264 ·10−6 1.4123 ·10−4

K=500 1.9133 ·10−5 4.6047 ·10−5

TABLE IV
GMRES RESULTS: F(X STAR)

n = 104 n = 105

K=100 100.0000 100.0000
K=500 500.0000 500.0000

V. SCHUR COMPLEMENT APPROACH

By the considerations made on matrix Q in section II we
understand that Schur complement approach is feasible since
it only asks for Q to be symmetric positive semi-definite.
Schur complement Q̂ = AQ−1AT is symmetric positive
definite under these conditions and belongs to RK,K .
To find x∗, at first we have computed λ∗ solving the linear
system

Q̂λ∗ = −b−AQ−1c (10)

obtaining

λ∗ =
[
−1.0000 − 1.0000 − 1.0000 − 1.0000...

]T
with dimension RK,1.
We’ve used this result in

x∗ = Q−1(−c−A′λ∗) (11)

leading to the final solution x∗ ∈ Rn.
Since Q is rappresented in different ways for n=104 and n=105

(as specified in section II) we used different methods for
computing Q̂: respectively directly computing the inverse of
Q and using the backslash operator.

We can say that Schur complement method is convenient
here since matrix Q is easy to invert and K is relatively small.

In the tables (V), (VI), (VII) and (VIII) are reported all the
results obtained with Schur Complement method.

TABLE V
SCHUR RESULTS: ELAPSED TIME (S)

n = 104 n = 105

K=100 35.2247 0.1900
K=500 33.9837 1.2846

TABLE VI
SCHUR RESULTS: KKT GRADL NORM

n = 104 n = 105

K=100 7.9029 ·10−15 0
K=500 4.1992 ·10−14 0

TABLE VII
SCHUR RESULTS: KKT EQ NORM

n = 104 n = 105

K=100 5.6613 ·10−6 0.2707
K=500 2.4407 ·10−6 0.1303

TABLE VIII
SCHUR RESULTS: F(X STAR)

n = 104 n = 105

K=100 100.0000 102.7070
K=500 500.0000 502.9141



VI. NULL SPACE METHOD

We can use null space method even if Q is non singular,
differently from Schur complement method.
Null space method is based on the assumptions that a particular
solution x̂ of the linear system

Ax = b (12)

is known and the null space matrix Z ∈ Rn,n−m, full rank, is
given such that AZ = 0.
In order to find the general solution of (12), we used an
arbitrary vector v ∈ Rn−m, defining x as

x = Zv + x̂ (13)

Replacing this equivalence in the first equation of (1) and
multiplying by ZT , we obtain the linear system

ZTQZv = −ZT (c+Qx̂) (14)

that can be solved with a Cholesky factorization of the
reduced-Hessian matrix ZTQZ to determine v and, as a
consequence of (13), the vector x∗.
To quantify the Lagrangain multiplier, we have solved the
system

AATλ∗ = −Ac−AQx∗ (15)

Results obtained with Null spaced method and elapsed time
are reported in tables (IX), (X), (XI), (XII)

TABLE IX
NULL SPACE RESULTS: ELAPSED TIME (S)

n = 104 n = 105

K=100 58.0505 139.8493
K=500 55.2803 5.7247

TABLE X
NULL SPACE RESULTS: KKT GRADL NORM

n = 104 n = 105

K=100 9.0386 ·10−15 1.6002 ·10−13

K=500 7.1856 ·10−15 1.4359·10−13

TABLE XI
NULL SPACE RESULTS: KKT EQ NORM

n = 104 n = 105

K=100 2.8152 ·10−15 8.5140 ·10−15

K=500 2.9708 ·10−15 7.8748·10−15

TABLE XII
NULL SPACE RESULTS: F(X STAR)

n = 104 n = 105

K=100 100.0000 100.0000
K=500 500.0000 500.0000

As we can see from tab. (IX), null space method is efficient
when n−m is small, otherwise the null-space matrix Z is too
expensive to compute.

VII. CONCLUSIONS

It is difficult to determine ”apriori” which method is better
to solve QP, since each one has its strengths and weaknesses
which are based on the specific problem, as explained in the
previous sections.

In general GMRES requires a lot of iterations, thus a lot
of computational time if high precision is required, so it’s
preferable to use the other two methods reported.

If both Schur complement approach and Null-Space method
are feasible, in general Schur complement approach is the
best choice as it solves smaller linear systems which is
computationally more efficient. Also, a risk of the Null-Space
method is that it may define a Z matrix which could make
the system (14) ill conditioned.

For our problems we’ve noticed, as shown in the table
(VIII), that Schur Complement Approach is not completely
precise when n is large (e.g. 105). We also can observe in
table VII that for large n the KKT equality constraints (9)
are not fully respected. This issue is probably given by the
fact that the matrix Q is sparse (as previously explained). The
Schur Complement Method, though, is clearly faster than the
other methods considered.

On that note, depending on the problem that we are trying
to solve, we should ponder a trade-off between accuracy and
computational time.

On the other hand, having a relatively smaller problem
(n = 104) both methods have satisfactory KKT equality condi-
tions (Null-Space gives most accurate results) and converge to
the same solution. The Schur Complement Approach is faster,
thus (all else being equal) better. This last consideration can
be observed in fig 1.

Fig. 1. Time comparison between considered methods having n = 104
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