
An approach to intent detection and speech
recognition problem

Florentin-Cristian Udrea
Politecnico di Torino

s319029

Abstract—In this report we introduce a possible approach to
the Intent detection problem starting from the audio samples
without using speech to text techniques. In particular, the pro-
posed approach consists leveraging both temporal and frequency
domain information by extracting the log-Mel spectogram and
the first thirteen Mel-frequency cepstral coefficients (MFCCs) of
each audio signal and split it into a specific number of blocks from
which are computed summaries described as statistical features.
The information will then be fed to a two model sequential
pipeline in order to predict the final intent. The proposed
approach outperforms a baseline defined for the problem and
obtains overall satisfactory results.

I. PROBLEM OVERVIEW

The problem proposed is known as audio intent detection.
It involves identifying the underlying intention or purpose of
a statement, in our case, given as a audio registration. The
provided dataset is split in two distinct parts:

• a development set, containing 9854 recordings and their
associated intent (described as two separate features:
action and object, the final intent would be their string
concatenation).

• an evaluation set, containing of 1455 recordings, but
without the associated intent.

The objective is to use the development set to build a classi-
fication process able to correctly label the evaluation set.
In both the sets, other than the audio recording, we also have
several other information about the speaker:

• self-reported fluency level
• first language spoken
• current language used for work/school
• gender
• age range

II. PROPOSED APPROACH

A. Data preprocessing

The first aspect analyzed was checking the missing values
values in our dataset. Fortunately our dataset didn’t have any,
so we proceeded with considering other aspects.

After a fast exploration of the value distribution of these
attributes, it becomes clear that only one of their values has
statistical significance. For istance, the value distribution of
the first language spoken, plotted as a histogram in fig. 1.

This pattern repeats also for fluency level and current lan-
guage. Since the less significant attribute values also coincided
with less fluent english speakers, we decided to mark them as

Fig. 1. First language distribution among speakers.

outliers, keeping only the speakers with the following attribute
values:

• self-reported fluency level: native or advanced
• first language spoken: English (United States)
• current language: English (United States)
Age range also presented such a distribution, speakers of

age ”65+” were mostly underrepresented in our dataset, yet
it didn’t denote a lesser capacity in speaking the english
language, so we preferred to keep all records.

On the other hand the gender attribute is equally distributed
therefore we kept all records.

At the end of the data cleaning process we removed what
we considered being outliers in our dataset and managed to
keep its size comparable with the one we started from, going
from 9854 records to 9081 records.

Next we focused on audio files and their characteristics. The
first step was to consider the frequency rate at which they were
recorded: most of them at 16 kHz, but not all, since the rest
were recorded at 22.5 kHz frequency rate. In order to have a
uniform dataset we brought all audio files to 16 kHz through
a resampling process.
Since the audio files were recorded in different contexts, many
of them had different volume levels (expressed as amplitude
standard deviation, as shown in fig.2). A normalization step
was then considered almost essential.

Fig. 2. Standard deviation distribution of audio files before preprocessing.



The last step was the examination of audio file lengths
(fig.3). As the figure shows, our dataset presented outliers
having a duration of 20 seconds and, by inspecting the longest
audio (fig.4), it becomes obvious that the issue is the silence
at the beginning and at the end of the recording. By trimming
the audio files, we removed the problem.

In order to ensure the robustness from outliers of our dataset
we further ignored audio files of length bigger than after-
trimming 95% quantile, which stated at 1.92 seconds.

Fig. 3. Audio length distribution before preprocessing (seconds).

Fig. 4. Longest audio signal before preprocessing represented in time domain.

The preprocessed audio files were still unusable for a classi-
fication algorithm. A feature extraction was needed in order to
bring out relevant data about the signals that was usable for the
chosen algorithm. We opted for a mixed approach, consisting
of both frequency domain and time domain statistical
features. By using the log-Mel spectogram we could ensure
the representation of the two domain features.
A spectogram is a matrix that contains the frequancy power
magnitude at a certain time. It is represented as in fig.5:

• on x axis: it contains the time dimension
• on y axis: it contains the frequency dimension
• the color: contains the power magnitude of the frequency

described by y axis at the time described by x axis
Furthermore the power magnitude is converted in logarithmic
scale as it is more representative of human perception.

Since the spectograms (as matrixes) had different dimen-
sions based on the duration of the audio file we needed a
way to standardize the number of features that we input into
the algorithms. In order to do that we split the spectogram
matrix into n2 blocks (splitting rows in n groups and columns
in n groups as shown in fig.6) and computed for each block
its mean and standard deviation. This way we wouldn’t
just obtain an uniform number of features, but also a feature
reduction. We will consider n as a hyperparameter and will
discuss its choice in section II.E.

Fig. 5. Audio signal: time domain and log Mel spectogram representation.

Fig. 6. Representation of spectogram splitting and feature extraction.

We further enriched our dataset by extracting the Mel-
frequency cepstral coefficients (MFCCs) out of each audio
file. It is a feature representation commonly used in speech
recognition problems to extract relevant information from
audio signals. MFCCs are derived from the power spectrum
of a speech signal, and they capture the characteristics of the
speech signal that are most relevant to the perception of speech
by the human ear. The coefficients were represented as an array
of values of variable length based on the length of the audio
signal. In order to uniform the number of values we used the
same technique used for Mel-spectrogram: splitting the array
in n equal parts and extracting the mean and standard deviation
out of each split. The number of coefficients used was 13 as
they are commonly considered to contain the most relevant
information [1].

As n grows, the number of features grow quadraticly. A
large number of features can decrease the accuracy of our
model as some less meaningful features may act only as
’noise’ (this phenomenon is known as ’curse of dimensional-
ity’ [2]). For this reason we applied the principal component
analysis (PCA) in order to reduce the number of features.
PCA asks for the number k of features to which we want
to reduce our dataset to and keeps the k features that best
separate the different classes. This is accomplished by linearly
transforming the data into a new coordinate system where
(most of) the variation in the data can be described with fewer
dimensions than the initial data. We will also consider k as a
hyperparameter and it will be discussed in section II.E.



B. Model selection
As previously mentioned the class (target of our

classification pipeline) is described as two separate attributes:
object which has 5 different values and action which has
also 5 different attributes. Since the objective is to predict
the combination of action and object we studied how many
combinations are there present in the dataset.

TABLE I
OBJECT - ACTION COMBINATIONS

Object Action
volume increase

decrease
heat increase

decrease
change language
activate music

deactivate lights

As shown in table 1 there are only 7 possible combinations.
Furthermore only volume and heat have two actions associated
while the rest have only one. This let us thinking that by
predicting the correct object, the action was almost certain, so
one approach would be using a pipeline of two classifiers,
the first one would predict the object and the second one
would predict the action having a dataset containing also the
object predicted. Considering that the prediction would be a
categorical value, it would be surely necessary to transform
it through an encoder (in this case we can use the one hot
encoder because the number of objects is small).

Another approach would be to try and predict directly the
combination of action and object, but since the number of
single objects is smaller than the number of combinations it
would have more data per each class, so we expect to have a
better accuracy using the pipeline described in the first method.

The algorithms tested for both steps are the following:
• Random Forest: it is an ensemble method, using multiple

decision trees (trained on random subsets of the dataset)
and giving the prediction by using majority votation. It
generally avoids the problem of overfitting generated by
simple decision trees. Since random forest works on one
value at the time, there is no need to normalize the
dataset. We use random forest algorithm as it has been
shown to work well on audio data [3].

• SVM: the algorithm applies (generally non linear) trans-
formation to the data points then maximum margin hy-
perplane that separates the classes. Since the margin is
calculated as distance between the points and the hy-
perplane a normalization of the dataset tipically increase
result quality. This model has also been shown to work
well on audio data [4].

The dataset uses statistical frequency attributes which are
not understandable to begin with, so the problem of model
understandability is not to be taken in consideration. Further-
more we did not use the speaker’s information (age, gender)
as it has no correlation with their intent.

C. Hyperparameter tuning

There are three sets of parameteres that require tuning:

• spectogram number of blocks: n
• PCA number of components: k
• SVM and RF parameters

As MFCCs and spectogram contain different information
we decided to use the same number of splits n. This way we
have splits that refer to the same part of the audio signal and
give insights from different points of view.

For simplicity we assume that feature extraction and
selection parameters (n and k) are independent from model
parameters, so we will firstly analyze the performances
of the models having default parameters on all n and k
combinations, then will analyze models hyperparameters on
the best combination found. The process will be repeated
for both models: first on the object classifier, then on the
action classifier having a dataset with correct (not predicted)
information about objects. The hyperparameter values used
are presented in table II.

TABLE II
HYPERPARAMETERS VALUES

Model Paramter Values
Spectrogram and MFCCs n 6 → 42, step 3

PCA k [10,30,70,100,300,500,700]
SVM C [1, 5, 10, 50, 100]

kernel [rbf, linear, sigmoid]
RFC max depth [None, 2 5, 10, 50]

criterion [gini, entropy]

In order to ensure that our model is not overfitting we used
as a metric the mean of the k-fold cross validation accuracy
scores, using kcv = 5. This way we can assume that our
hyperparameters are not optimizing for the test dataset only.

III. RESULTS

Unsurprisingly, both classifiers gave best results for the
same feature extraction parameters. In fig.7 are described the
accuracies of the object classifier for both algorithms and,
even if values change slightly, the trend is the same also for
the action classifier.

Fig. 7. Accuracy heatmap of default models SVM and RFC addressing object
classification under the changing variables n and k



The best combination of feature extraction parameters re-
sulted as (n, k) = (12, 70) used on the SVM algorithm, with
the following accuracies:

• Object-classifier: 0.893
• Action-classifier: 0.884
A further inspection of the neighbourhood of the best

parameters showed that results were almost the same for
n ∈ [10, 15] and k ∈ [50, 80]. In this case the best result was
the configuration (n, k) = (15, 80) used on the SVM classifier
that would bring the accuracy up to 0.894, so we kept it.

At this stage the SVM classifier was already outperforming
the Random Forest Classifier, which had mean accuracy of
around 0.78 in both object and action classification.

After the model hyperparameter tuning the SVM accuracy
was slightly better and we assessed that best results were given
by:

• Object-classifier: SVM(C=5, kernel=’rbf’)
→ accuracy=0.904

• Action-classifier: SVM(C=5, kernel=’rbf’)
→ accuracy=0.900

The Random Forest Classifier, instead, didn’t get any im-
provement from the hyperparameter tuning process, so we
decided that the two SVM configurations shown above would
be implemented in the final pipeline.

If we consider the accuracy as the probability of com-
puting the right result and assume the two probabilities
as independent, the final accuracy we could expect was
afinal ≈ 0.813, value given by multiplying the accuracies of
the two models. In fact the accuracy given by predicting the
evaluation set and submitting the result on the leaderboard
was aleaderboard ≈ 0.823 which is comparable. The slight
improvement (with respect to the expected value) can be
explained as the final models had the entire development
dataset to train on, which may have boosted the performance
(other than the inexact assumption that the two probabilities
are independent).

IV. DISCUSSION

The final pipeline was composed by two SVM models used
sequentially, the second one working on the initial dataset
enriched by the first model’s prediction. It worked on a
modified dataset that leveraged both temporal and frequency
features by using the log-Mel spectogram and MFCCs.

In order to assure the quality of our pipeline we decided to
compare it with a naive classifier, in particular one that labels
every record as the most frequent class. Our pipeline was,
indeed, outperforming the naive classifier as it had a mean
cross-validation accuracy of anaive = 0.249.

Even if the final accuracy score is satisfactory when com-
pared with the baseline (abaseline = 0.334) and with the naive
classifier(anaive = 0.249) we believe that in the context of a
bigger project where more time and resources can be allocated
there are more advanced techniques that could be considered
in order to create a better performing pipeline, such as:

• using more complex models, such as convolutional
neural networks (CNN, that perform and optimize feature

extraction internally) or recurrent neural networks (RNN,
that work really well on sequential data such as audio
files), in order to increase the accuracy of the pipeline at
each step.

• taking into consideration other features that may be
extracted from the audio in the dataset, such as: Spectral
Centroid (represents the center of gravity of the audio
spectrum and is commonly used as a measure of the
”brightness” of the sound), Zero Crossing Rate (the rate
of sign-changes along a signal, often used as a feature
for speech and audio classification) and so on.

• improving the dataset using audio data augmentation
techniques, such as: adding noise, changing the pitch,
changing the tempo, stretching the audio file and so on.
This would be particularly beneficial in our case, since
it would even out the difference in distribution of the
outcomes

REFERENCES

[1] T. Davis and K. K. Paliwal, ”Unsupervised feature extraction techniques
for speech signals,” Signal Processing, IEEE Transactions on, vol. 42,
pp. 3006-3018, 1994.

[2] ”Curse of dimensionality and feature selection,” by Guyon, I.,
Weston, J., Barnhill, S., Vapnik, V. (2003). Available at:
https://link.springer.com/article/10.1023/A:1023784627191

[3] F. Saki, A. Sehgal, I. Panahi, and N. Kehtarnavaz, “Smartphone-based
real-time classification of noise signals using subband features and
random forest classifier,” in 2016 IEEE international conference on
acoustics, speech and signal processing (ICASSP). IEEE, 2016, pp.
2204–2208.

[4] P. Dhanalakshmi, S. Palanivel, and V. Ramalingam, ”Classification of
audio signals using svm and rbfnn,” Expert Systems with applications,
vol. 36, no. 3, Part 2, pp. 6069 – 6075, 2009.

MENTIONS

Many thanks also to Sara Rosato for supporting me in the
project.


