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Abstract—In this review we’re going to examine and compare
the results obtained using tree numerical methods for uncon-
strained optimization: Steepest Descent Method and Fletcher
& Reeves which uses exact computations and Inexact Newton
Method with Finite Differences which uses mostly approximated
computations.

I. INTRODUCTION

The aim of unconstrained optimization is to find x that
minimizes f(x), with x ∈ Rn and f : Rn → R, having no
constraints on x.

Steepest descent Method (SD) is an optimization method
that moves along the direction

pk = −∇f(xk)

at each step. This one requires only the computation of the
gradient value and this choice is convenient as a search
direction, since it is the one along which f decreases most
rapidly from the point of evaluation.

The Conjugate Gradient Method, instead, improves the
SD method by computing a descent direction that is never
orthogonal to any of the previous decent directions. It can be
proven that using such a descent directions leads to a faster
convergence respect to the SD [2]. Fletcher and Reeves’
method (CG-FR) adapts the conjugate gradient in order to
minimize general non-linear functions. The differences are
the step length which is computed through a line search that
look for an approximate minimum of the function along the
direction pk and the definition of the residual that now is the
gradient of f:

βk+1 =
∇fT

k+1∇fk+1

∇fT
k ∇fk

= ||∇fk+1||2
||∇fk||2

pk+1 = −∇fk+1 + βk+1pk

For Inexact Newton method (INM), instead, pk has to
satisfy the following:

||∇2f(xk)p+∇f(xk)|| ≤ ηk||∇f(xk)||

where ηk are ”forcing terms” and, depending on which one of
them is chosen, a different rate of convergence is obtained. In
this way the residual is not zero but a small quantity, depending
on the gradient. The method therefore uses approximations
in order to reduce the computational cost, which is quite
large for Newton Method. Moreover we also implemented
’Finite Differences’ to our Inexact Newton Method, which is

a technique that allows us to skip the full computation of the
gradient and hessian matrix by approximating them.
In all the methods we’ve implemented a backtracking strategy
with Armijo condition, using as parameters ρ = 0.5 and c =
10−4. While for the INM we always started with a step α0 =
1 (because of the way the step is calculated), for the SD and
CG-FR methods we chose an α0 = 5. This choice is motivated
by the different way the descent vectors are computed.
At first we tested our methods on the Rosenbrock function,
then attempted to solve the problems number 5, 13, 14 and
16 chosen among those listed in [1] having a dimension of
n = 104.

Since we used the forcing term
ηk = min(0.5,

√
||∇f(xk)||) we expect a superlinear

convergence rate from the INM, thus comparable with
CG-FR and higher than the linear convergence rate of
the SD. Furthermore we imposed a convergence tolerance
tol = 10−6, meaning we consider a method to converge if
||∇f(xk)|| < tol.
In introducing the problems we used the notation xi to
indicate the starting point.

II. ROSENBROCK FUNCTION

f(x1, x2) = (1− x1)
2 + 100

(
x2 − x2

1

)2
x(0) = (1.2, 1.2), x(1) = (−1.2, 1)

The Rosenbrock function is a non-convex function
f : R2 → R which is often used as a test problem for op-
timization algorithms. It has a global minimum of 0 at the
point x∗=(1, 1).
We tested our methods with two different starting points:
x(0)=(1.2, 1.2) being the easier one to converge from and
x(1)=(-1.2, 1) being the harder one.

Using as starting point x(0) = (1.2, 1.2), all the tree meth-
ods converge to the actual minimum x∗ with an acceptable
error.

With the other point x(1), instead, both Steepest Descent
and Fletcher and Reeves perform well, while Inexact Newton
Method doesn’t converge, reaching the point (-1.04, 1.07) that
is far from x∗ . This happens because the hessian computed by
the finite differences is not positive definite, thus the method
could not converge.



The norm of the gradient of f(xk) and the error norm, defined
as ϵk = ||x∗ − xk||, are reported in the tables I, II, III.

TABLE I
RESULTS FOR ROSENBROCK PROBLEM WITH STEEPEST DESCENT

Steepest Descent Method
ϵk ||∇f(xk)||

x(0) = (1.2, 1.2) 1.7595·10−6 9.9876·10−7

x(1) = (−1.2, 1.0) 1.7503·10−6 9.8334·10−7

TABLE II
RESULTS FOR ROSENBROCK PROBLEM WITH FLETCHER AND REEVES

Fletcher and Reeves’ Method
ϵk ||∇f(xk)||

x(0) = (1.2, 1.2) 2.4010·10−6 9.6493·10−7

x(1) = (−1.2, 1.0) 4.4062·10−7 2.2172·10−7

TABLE III
RESULTS FOR ROSENBROCK PROBLEM WITH INM

Inexact Newton Method
ϵk ||∇f(xk)||

x(0) = (1.2, 1.2) 2.9503·10−4 1.1781·10−4

x(1) = (−1.2, 1.0) 2.0321 1.9487

III. GENERALIZED BROYDEN TRIDIAGONAL FUNCTION
[P5]

A. Problem definition

F (x) =

n∑
i=1

|(3− 2xi)xi − xi−1 − xi+1 + 1|p

p = 7/3, x0 = xn+1 = 0

xi = −1, i ≥ 1.

B. Results and discussion

As shown in table IV both SD and CG-FR methods converge
as their ||∇f(xk)|| is lower than the tolerance set, while the
IN method fails to archive convergence (it was stopped at 13
iterations as it didn’t improve the ||∇f(xk)|| more than 10−12

for 5 consecutive iterations).
Upon further inspection, though, we saw that xINM

k

was relatively close to xSDM
K (||xSD

k − xINM
k || ≈ 3).

By changing the forcing terms to a more aggressive one
(ηk = min(0.5, ||∇f(xk)||)) the method doesn’t improve its
result and the norm difference remains the same. The CG-
FR, instead, converges to a clearly different minimum point
(||xSD

k −xCG−FR
k || ≈ 47). This would explain why it requires

significantly more iterations.
By changing the starting point to the origin (x = 0) we find

out that ||xSD,0
k − xCG−FR,0

k || ≈ 4.5, so now they are closer,
but the fact that the difference was not equal to ||xSD

k −xINM
k ||

led us thinking that the problem had many minimum points. A
comparison between ||xINM,0

k −xCG−FR,0
k || was not possible

as the hessian matrix computed by the IN method in the origin
was not positive definite, thus it did not converge. This shows
how the starting point is decisive for the convergence of the
algorithm.

One other aspect to take into consideration is execution
time, as INM requires significantly more time to converge
compared to the others (about 2 hours against less than one
second for SD and ten seconds for CG-FR). It is to be
expected, as INM, differently from the other methods, has to
compute both ∇f ∈ Rn (the gradient) and ∇2f ∈ Rn,n (the
Hessian) at every iteration. This results computationally very
expensive thus requires a lot of time in order to be generated.

TABLE IV
RESULTS FOR P5 STARTING FROM x

SD Method CG-FR Method IN Method
f(xk) 9.85 · 10−13 8.53 · 10−9 6.91 · 10−7

||∇f(xk)|| 8.47 · 10−9 9.98 · 10−7 1.30 · 10−3

Iterations (k) 51 3921 13
Time (in seconds) 0.21 10.07 7254

IV. GENERALIZATION OF THE BROWN FUNCTION 2 [P13]

A. Problem definition

F (x) =

k∑
j=1

[(
x2
i−1

)(x2
i+1)

+
(
x2
i

)(x2
i−1+1)

]
,

i = 2j, k = n/2,

xi = −1,mod(i, 2) = 1, xi = 1,mod(i, 2) = 0.

B. Results and discussion

TABLE V
RESULTS FOR P13 STARTING FROM x

SD Method CG-FR Method IN Method
f(xk) 1.098 · 10−13 1.95 · 10−13 1.01 · 10−24

||∇f(xk)|| 6.62 · 10−7 8.83 · 10−7 2.01 · 10−12

Iterations (k) 15 10 7
Time (in seconds) 0.025 0.026 3624

As shown in table V all methods converged. This problem
shows well enough the convergence rates of the methods used:
the fastest was the IN method with 7 iterations. It was to
be expected as it as its convergence rate is superlinear. The
slowest was the SD method having done more than double
the iterations (15 iterations) which is understandable as the
convergence rate is only linear. The CG-FR method, instead,
finished in 10 iterations. It shows how CG-FR method is
an improvement of SD method and its convergence rate is
superlinear, yet slower than IN method.

For this problem all methods converged to the same mini-
mum, even if with different precisions. The most precise was
the IN method as its ||∇f INM || had the order of magnitude
of 10−24 it came very close to a real minimum. The other
methods had ||∇f || orders of maginitude of about 10−13,



which is also pretty accurate, but less accurate than the IN
method. The precision gained with the IN method is paid,
though, in computational time: for the reasons explained in
the discussion of P5, the computation of the Hessian and of
the gradient of the function at each iteration require a lot of
time to be generated.

V. DISCRETE BOUNDARY VALUE PROBLEM [P14]

A. Problem definition

F (x) =

n∑
i=1

[
2xi − xi−1 − xi+1 + h2 (xi + ih+ 1)

3
/2
]2

,

h = 1/(n+ 1), x0 = xn+1 = 0,

xi = ih(1− ih), i ≥ 1.

B. Results and discussion

As shown in table VI this problem, with starting point x,
does not converge with any of the tree methods analyzed.
In particular, INM stops after only 5 iterations since it does
not improve the ||∇f(xk)|| more than 10−12 for 5 consecutive
iterations, even changing forcing terms.

Inspecting deeper this method, we have seen that at each
iteration the Hessian is non Positive-Definite and in this case
it’s common for the INM to not converge since it is not a
completely reliable method.

After this consideration, we have tried to change starting
point, using the origin (x = 0) and obtaining the results
reported in table VII. Even with 105 iterations, Steepest
Descent Method and Fletcher & Reeves don’t converge, while
Inexact Newton Method reaches the desired tolerance.

Furthermore, we saw that ||xINM,0
k − xSD,0

k || ≈ 7.3 · 10−4

and ||xCG−FR,0
k − xSD,0

k || ≈ 1.3 · 10−3, so the last points
computed by the methods are very close.

TABLE VI
RESULTS FOR P14 STARTING FROM x

SD Method CG-FR Method IN Method
f(xk) 2.1639 · 10−8 2.1614 · 10−8 2.1727 · 10−8

||∇f(xk)|| 1.5 · 10−3 1.5 · 10−3 1.2974 · 10−5

Iterations (k) 50000 50000 5
Time (in seconds) 1149 1053 3216

TABLE VII
RESULTS FOR P14 STARTING FROM x = 0

SD Method CG-FR Method IN Method
f(xk) 4.4273 · 10−9 4.3919 · 10−9 2.1727 · 10−8

||∇f(xk)|| 6.3563 · 10−4 6.3167 · 10−4 9.9263 · 10−7

Iterations (k) 100000 100000 7
Time (in seconds) 1996 1463 6807

VI. BANDED TRIGONOMETRIC PROBLEM [P16]

A. Problem definition

F (x) =

n∑
i=1

i [(1− cosxi) + sinxi−1 − sinxi+1]

x0 = xn+1 = 0 x̄i = 1, i ≥ 1

B. Results and discussion

The methods taken in consideration don’t converge with the
starting point x, , even if they all reach the f(xk), as reported
in table VIII.

By inspecting INM, we have seen in the first ∼ 8 iterations
the Hessian is not positive-definite, but after that it becomes
positive-definite. Despite this change, the method does not
converge and also takes lots of time. We stopped after 50
iterations.

Using as starting point x = 0 (and increasing the maximum
number of iterations), we observed slightly better results, as
reported in table IX. Among the tree methods, only steepest
descent converges.

The interesting thing to notice is that with both starting
points and all the methods, the value f(xk) is the same.

In order to assure that the non-convergence is an issue
given by the size of the problem we conducted a further trial
changing the size from n = 1000 to n = 100. Indeed, for
this problem all methods converged, so we understand that
with enough time and iterations, also the n=1000 problem
converges. Results are shown in table X.

TABLE VIII
RESULTS FOR P16 STARTING FROM x

SD Method CG-FR Method IN Method
f(xk) −427.4045 −427.4045 −427.4041

||∇f(xk)|| 1.2157 · 10−5 7.3911 · 10−5 0.0002

Iterations (k) 50000 50000 50
Time (in seconds) 94 159 6185

TABLE IX
RESULTS FOR P16 STARTING FROM x = 0

SD Method CG-FR Method IN Method
f(xk) −427.4045 −427.4045 −427.4045

||∇f(xk)|| 9.4604 · 10−6 1.3258 · 10−4 6.9677 · 10−5

Iterations (k) 50000 50000 100
Time (in seconds) 174 230 16347

TABLE X
RESULTS FOR P16 STARTING FROM x WITH N=100

SD Method CG-FR Method IN Method
f(xk) −49.99 −49.99 −49.99

||∇f(xk)|| 9.6638 · 10−7 9.3319 · 10−7 4.4363 · 10−6

Iterations (k) 210 115 150
Time (in seconds) 0.36 0.05 41



VII. CONCLUSIONS

As shown in the previous paragraphs, each problem has its
own unique issues. Based on the problem faced each method
gives different results.

We saw that the starting point plays a crucial role in the
convergence of the methods. In particular the INM could
compute a non positive-definite hessian, thus risking to never
converge. Even if it arrives at convergence, xINM

k can be
different than xSD

k or xCG−FR
k . We can conclude that the INM

is not reliable in such a situation. By changing the starting
point we saw that this problem can be avoided.

Also the size of the problem can increase significantly the
computational time. In particular for the INM, at each iteration
there are ∼ 4 · 106 evaluations of the function f(x) for
n = 1000 for the Hessian alone. This issue does not arise for
SD and CG-FR since they need the exact gradient (and they
don’t need the Hessian) and they converge very fast, even if
more iterations are needed.

Generally, if none of the previous problems arise, we can
say that the theoretical considerations about convergence rates
of the methods hold. The INM more often is the best choice,
being both the more precise and the one that performs less
iterations. The computational time, though, can be very high
if finite differences are used.

REFERENCES

[1] https://www.researchgate.net/publication/325314497 Test Problems
[2] ”A comparative study of conjugate gradient and steepest descent meth-

ods for optimization” by L. Sonneveld, Journal of Global Optimization,
Volume 42, Issue 2, pp. 505-525, 2008.

[3] Matlab Code: https://github.com/florentin1304/numerical-optimization-
stochastic-optimization-course


