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Abstract

The main issue arising when working in the Federated
Learning (FL) setting is distributions shift among different
clients. In the following work, we analyse the FL framework
and a few of the solutions proposed in the literature for its
intrinsic problems.

The base FedAvg algorithm is proposed and analysed in
the initial part of the paper in order to have a baseline on
the FEMNIST dataset and compare it to the centralised set-
ting. The hyper-parameters of the federated setting were
analysed in detail and conclusions were drawn. The distri-
butions shift problem, in particular, was then analysed in
detail under two different lights: first related to the change
of class distribution and then related to the change in the
domains among clients. The first class of problems is for-
mally known as Statistical Heterogeneity and the second as
Domain Generalisation.

Finally, we propose the first, to the best of our knowl-
edge, adaptation of the well-known adversarial learning
technique DANN [8] to the Federated scenario as a pos-
sible domain generalisation solution.

Code published at: Link

Index terms — Federated Learning, Domain Generalisa-
tion, Statistical Heterogeneity, Adversarial Learning

1. Introduction
Federated learning (FL) [3] is a machine learning

paradigm in which multiple clients cooperate to learn a
model under the orchestration of a central server. This is
done in order to preserve the privacy of clients, which is
the main reason behind the creation of this paradigm, since
in order to train the model in a centralised way, it would
need access to possibly sensitive client data, which would
jeopardise their right to privacy.

Learning data in a federated setting, although it can open
the door to countless applications [4] [5], presents new ob-
stacles to be faced such as:

• Privacy and security: the main reason behind the
conception of the FedAvg algorithm [3], explained ear-
lier.

• Statistical: Devices frequently generate and collect
data in a non-indipendent and identically distributed
(nIID) manner across the network, e.g., in classifica-
tion tasks. This data generation paradigm, by violat-
ing frequently-used independent and identically dis-
tributed (IID) assumptions in distributed optimization,
adds complexity in terms of modeling, analysis, and
evaluation. [6]

• Systems: the number of clients in a federated setting
is generally larger than the number of data of interest
in each client. Moreover, each client may have lim-
itations in terms of computation, communication and
availability, and may differ from the others in terms of
hardware, power and network connection. [15]

In our work we will focus mainly on the statistical prob-
lems in federated learning:

• in section 4: a detailed explanation of the datasets used
was made;

• in section 5: an analysis of the two baselines, the cen-
tralised one using EMNIST [2] and the federated one
using FEMNIST [15];

• in section 6: some proposed methods to tackle the
problem of statistical heterogeneity, in particular smart
client selection [16] and server-side momentum [6];

• in section 7 : an analysis of the domain generalisation
problem by means of leave-one-domain-out tests, and
the use of the FedSR algorithm [14];

• finally, in sections 8 and 9, the description of our
proposed method to tackle the domain generalization
problem by means of non-generative adversarial learn-
ing [8] and its results.

2. Related work
Domain generalisation (DG) aims to achieve out-of-

distribution generalization by using only source data for
model learning [11]. One approach proposed by Liu et al.
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[12], called FedDG, specifically created for image segmen-
tation in the medical field, consists of boundary-oriented
episodic learning by exchanging multi-source distributions
across the frequency space. This method, though, can be
seen as a form of data leakage, which might be considered
against FL principles.

Another approach, proposed by Zhang et al. [13], called
FedADG tries to align the distributions among different
source domains by matching each distribution to a reference
distribution, the latter being derivated from a generative ad-
versarial model. Despite the fact that this, unlike the previ-
ous approach, does not violate the principle of data privacy,
it may be overly complicated to put into practice, and fails
in any case to match state-of-the-art centralised methods.

Inspired by this last approach, Nguyen et al. [14] pro-
posed the FedSR framework, where the model learns a
”simple representation” of the data by using an L2-norm
regulariser on the representation and Conditional Mutual In-
formation, between the representation and the data given the
label, regulariser to encourage the model to learn essential
features, common to all domains.

In the context of Domain Alignment, Ganin et al [8] pro-
posed the use of Domain-Adversarial Neural Networks in
which source labelled and target unlabelled data are used in
order to find features that can best differentiate classes and
be indiscriminate in the context of domain-shifting. Even
though the DANN architecture was initially intended for
domain alignment (DA), in which both source domain and
target domain inputs are used in the training procedure, the
intuition behind was applied also to the domain generalisa-
tion problem (DG) [9], where only source domain are used
for training. However, this approach has been applied in a
non-federated setting and is based on the concept of domain
adaptation in which there is a strong assumption that the
target data is accessible to the model, which is not always
the case in practice. Motivated by this, we propose our ap-
proach to the problem of domain generalisation in the FL
setting through the use of Domain-Adversarial Neural Net-
works.

In the context of Statistical heterogeneity, the proposals
of Cho et al. [16] and Hsu et al. [6] to solve the problem
were taken and reproduced. Specifically, the former [16]
tried to solve the problem by no longer randomly selecting
clients for each round, the latter [6] by adding momentum
to the server, creating a dual optimizing procedure both in-
ternally for each client and externally for the server at the
moment of aggregation.

3. Problem Statement
3.1. FedAvg algorithm

One of the first algorithms proposed was the ”Federated
Averaging” algorithm, or FedAvg. The goal of the algo-

rithm is to minimise the following objective function:

min
w∈Rd

f(w) where f(w)
def
=

1

n

n∑
i=1

fi(w) (1)

For a machine learning problem, we typically take
fi(w) = l(xi, yi;w), that is, the loss of the prediction on
example (xi, yi) made with model parameters w. We as-
sume there are K clients over which the data is partitioned,
with Pk the set of indexes of data points on client k, with
nk = |Pk|. Thus, we can re-write the objective 1 as:

f(w) =

K∑
k=1

nk

n
Fk(w) where Fk(w) =

1

nk

∑
i∈Pk

fi(w) (2)

This algorithm works by choosing a fraction C of the clients
(if C = 1 then all K clients are taken) each learning round.
Once chosen the active clients the server sends them the
current model (a model randomly initialised at the begin-
ning), then each client uses its own data to train the model,
wk

t+1 ← wk
t − η∇Fk(w

k
t ) for an E number of epochs and

then sends the server the number of data used to train
the model, nk, and the trained model, wk

t+1; finally the
server uses this received data to update the overall model
wt+1 ←

∑K
k=1

nk

n wk
t+1. All this for an a priori decided

number of rounds, usually a few hundred.

3.2. Statistical heterogeneity

Statistical heterogeneity refers to the presence of varia-
tions in the data distributions across different domains or
clients in a federated learning setting. It is a problem be-
cause it can adversely affect the performance and general-
ization capability of the federated learning model.

For example, it can introduce bias and unfairness in the
model, favoring domains with more representation or can
result in poor generalization as the model struggles to cap-
ture common patterns across diverse domains.

As can be seen in fig.1, the problem occurs when there
are variations in the data distributions across different do-
mains or clients participating in the federated learning set-
ting. In fact, clients use their local data to train the model
and these may also have different types of devices or sen-
sors, resulting in variations in data distribution.

Due to the nature of the federated framework, it is not
possible to directly compare these distributions for privacy
reasons, which therefore raises several challenges in this
framework, trying to find techniques that can mitigate this
phenomenon and make the model more robust.

3.3. Domain generalisation

In federated learning each client typically represents a
different domain, such as different hospitals, companies, or
geographical regions. These domains may have variations
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Figure 1. Example of the Statistical Heterogeneity problem

in data distributions, feature representations, and data col-
lection processes. The main goal of federated learning is to
train a model that can generalize well to unseen data from
all the participating domains.

This is where we see the main problem with Domain
Generalisation in Federated due to the very nature of the
framework we are using. As a matter of fact, it is never pos-
sible for any client to see the domains of other clients, and
our model will only be able to train on one client and thus
domain at a time, which makes federated domain generali-
sation problem quite unique.

Formally we describe a domain as a set of data
Sk = {(xi, yi)}ni=1 ∼ P k

XY , where xi is taken from the in-
put space X ⊂ Rd and yi is taken from the output space
Y ⊂ R. Each domain is described by a joint distribution
P k
XY . Consequently X and Y denote the corresponding ran-

dom variables.
In domain generalisation we are given a set of training

(source) domains Strain = {Si|i = 1, ...,M}, where the
joint distributions between each pair of domain is different:
P i
XY ̸= P j

XY ∀i ̸= j. The goal of domain generalization
is to learn a robust and generalisable predictive function h :
X → Y from the M training domains to achieve a minimum
prediction error on an unseen test domain Stest (i.e. Stest

cannot be accessed during training and P test
XY ̸= P i

XY for
i ∈ {1, ...,M}, as described in fig. 2.

Figure 2. Example of the Domain Generalisation problem

3.4. Domain adversarial regularisation

Our proposal seeks to bridge the effects of domain-
shifting between clients by using Domain-Adversarial Neu-
ral Networks [8], DANN for short, whose architecture is
similar to that of a classical CNN with a few differences.

The first part of the network, called the feature extractor,
consists of the convolutional layers typical of a CNN; two
branches branch off from this, the first is the classic la-
bel predictor, whose loss function is minimised, the sec-
ond is the domain classifier, where the aim is to maximise
the respective loss function as much as possible. The pur-
pose of these two branches is to train the model to cor-
rectly recognise class labels, but also not to be able to dis-
tinguish between different domains, in short we want the
features found by the feature extractor to be class-accurate,
but domain-invariant. Hence the concept of ’Domain-
adversarial’, as one of the branches seeks to minimise its
loss function, while the other seeks to maximise it.

For the sake of simplicity we will consider our neural
network to have only one hidden layer, nevertheless the in-
sights we’ll get out of the following analysis are useful for
more complex networks as well. Therefore we will describe
our featuriser as:

z := Gf (x;W,b) = ReLU(Wx+ b) (3)

Similarly we describe the classifier as:

ŷ := Gy(z;V, c) = Vz+ c (4)

having ReLU(x)
def
= max(0, x). Given a sample (xi, yi) we

will estimate the classification loss with the cross entropy
loss, described as:

Ly(ŷi,yi;W,b,V, c) = −
Cy∑
c=1

log
exp (ŷi,c)∑Cy

k=1 exp
(
ŷi,k

)yi,c (5)

having ŷ = Gy(Gf (xi;W,b));V, c) explains also why
Ly is also a function of W,b,V, c. Thus the classifica-
tion’s optimisation problem becomes

min
W,b,V,c

[
1

n

n∑
i=1

Ly(ŷi,yi;W,b,V, c))

]
(6)

By adding the adversarial branch to our neural network we
introduce a domain classifier as:

d̂ := Gd(z;U, t) = Uz+ t (7)

and the domain classification loss Ld(d̂i,di;W,b,U, t)
also defined as cross entropy loss (thus similarly to (5)), the
classification problem (6) becomes a regularised minimiza-
tion problem:

min
W,b,V,c

[
1

n

n∑
i=1

Li
y(W,b,V, c) + λ ·R(W,b)

]
(8)

Where we define the regularisation term as the maximisa-
tion of the domain classification loss, in order to ensure
the domain-invariance of the domains in the feature latent
space:

R(W,b) = max
U,z

[
1

n

n∑
i=1

Li
d(W,b,U, z)

]
(9)

3



Thus we can express our adversarial optimisation problem
in full form as:

min
W,b,V,c

[
1
n

∑n
i=1 Li

y(W,b,V, c) + λ ·max
U,z

(
1
n

∑n
i=1 Li

d(W,b,U, z)
)] (10)

4. Datasets Used
All datasets that were used in the conduct of the ex-

periments for reproducibility purposes are described below.
This section seemed important to include as a new dataset
(DGFEMNIST) was created for the development of the ex-
periments.

4.1. EMNIST

The EMNIST (Extended MNIST) dataset [2] is a set of
handwritten character digits derived from the NIST Spe-
cial Database 19 and converted to a 28x28 pixel image for-
mat and dataset structure that directly matches the MNIST
dataset. In particular the EMNIST ByClass is considered, in
which 814,255 characters are presents, divided in 62 classes
(10 digits, 26 lowercase and 26 uppercase characters).

4.2. FEMNIST

The FEMNIST (Federated Extended MNIST) dataset
[15] is built by partitioning the data in Extended MNIST
into approximately 3500 clients. The dataset can either be
split in a IID (Independent and identically distributed) or
nIID (Non Independent and identically distributed) fashion.
In the first case, all users have the same underlying distri-
bution of data. In the second case instead, each client is a
different writer, so the local datasets differ on both classes
and handwriting.

4.3. RotatedFEMNIST

Taking inspiration from [14], the RotatedFEMNIST
dataset was created. The only difference to the cited pa-
per is related to the fact that we are in a Federated environ-
ment, so instead of transforming 1000 images, 1000 clients
were taken into account and one of the 6 transformations
proposed in Fig. 3 was applied for all its images (equally
distributed, so each transformation is applied to 167 clients
out of the approx. 3500 total).

Figure 3. Example of all the transformations of RotatedFEMNIST
on an image taken from FEMNIST

4.4. DGFEMNIST

Considering that during the experiments the use of Ro-
tatedFEMNIST often gave similar results to normal FEM-
NIST, since the shift domain between one domain and the
other is relatively low especially for the first rotations, it

was decided to create a new set of transformations for a
new dataset that could generate sharper shift domains. The
six transformations, observable in FIG. 14, are described
below:

1. No transformation.
2. Motion blur.
3. Colour inversion.
4. 45-degree rotation.
5. Random noise.
6. Random translation and rescaling.
The distribution of transformed clients is the same as that

followed in RotatedFEMNIST. More examples of trans-
formed images can be seen in appendix A.

Figure 4. Example of all the transformations of DGFEMNIST on
an image taken from FEMNIST

5. Experiment setting and benchmarks
The experiments in the following paragraphs, unless ex-

plicitly stated otherwise, were carried out with a very sim-
ple Convolutional Neural Network (CNN), the architecture
of which we report here for the reproducibility of the exper-
iments.

• Two 5x5 convolutional layers with 32 and 64 output
channels respectively.

• Each convolutional layer is followed by both a 2x2
max pooling layer and a ReLU activation layer.

• Two fully connected layers, the fist one mapping the
input to 2048 output features, and the second one map-
ping to the number of classes, that is 62 in both EM-
NIST and FEMNIST.

• Dropout is applied with p = 0.25 to all the layers ex-
cept the last one.

5.1. Centralised Baseline using EMNIST

Before starting to carry out the experiments in the Fed-
erated environment using FEMNIST, to make an initial se-
lection of the hyperparameters and to gain familiarity with
the dataset, some experiments were first carried out in the
centralised environment using EMNIST.

Furthermore, the main aim of these experiments is also
to have a centralised baseline, which can be seen as the best
result that can be obtained later using the same network in
the Federated framework.

The tuning of the hyperparameters was performed on
the learning rate and the weight decay, as it was seen that
momentum other than the one used (m = 0.9) led to a
clear decrease in accuracy. The values tested were lr =
{0.1, 0.01, 0.001} and wd = {0, 1e-4, 1e-5}.
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Figure 5. Results obtained when varying the weight decay and
learning rate

In Fig. 5, one can observe the results obtained, and see
that the best hyper-parameters are lr = 0.01 and wd =
1e-5, with an accuracy of 0.8712.

5.2. Federated Baseline
For these experiments, and all federated experiments ex-

cept when explicitly written, Leaf’s FEMNIST [15] dataset
was used. For Federated’s baseline, the learning rate of each
individual client was set to lr = 0.1, momentum m = 0.9,
batch size bs = 64 and weigth decay wd = 1e-4. The op-
timiser chosen is SGD. As far as the server is concerned,
however, we left lr = 1 and m = 0 for this initial phase of
experimentation.

The hyper-parameters taken into account in this phase of
the experiment are the clients selected per round (cr) and
the number of training epochs each client performs (ne) in
both the IID and nIID cases.

The objective is to find a correct tradeoff between ac-
curacy obtained in the result, the amount of data sent to
the server (∝ cr) and the computational cost of the devices
(∝ ne).

As expected, as the number of selected clients per round
increases, the accuracy of the model also increases. How-
ever, it is important to note that, from the results obtained,
the growth of accuracy in relation to the number of users
appears to be logarithmic (as it is necessary to double the
number of clients in order to have linear growth in accu-
racy), as can be seen in Fig. 6. On the other hand, by in-
creasing the number of ne, the model does not necessarily
improve in accuracy. As a matter of fact, since we do not
have a centralised dataset but only a few data points within
each individual client, we only consider the latter in each
epoch, which has a great influence on the SGD step.

In fact, the individual clients contain much less informa-
tion than the respective batches in the centralised model, so
we would have an effect similar to iterating over the same
batch several times before moving on to the next one.

As mentioned before, we therefore tried to find a valid
tradeoff between the results obtained and the costs attached,
and for this reason for the experiments to follow, cr = 10

Figure 6. Results obtained when varying the number of clients per
round and epochs per client, for both IID and nIID

and ne = 1 were set as hyperparameters. With these hyper-
parameters, selecting 10 clients per round and having each
of them do an epoch, the accuracies obtained are 0.8535 for
IID and 0.8487 for nIID.

6. Statistical Heterogeneity
In this chapter, a couple of methods proposed in the liter-

ature to attempt to solve the problem of Statistical Hetero-
geneity are proposed.

6.1. Smart client selection

The FedAvg algorithm, as described in 3.1 chooses a
fixed number clients each round by randomly picking from
the available set. This scheme is known as unbiased client
selection.

Yae Jee et al. in [16] have shown how biased client se-
lection plays an important role in heterogeneous environ-
ments (nIID scenario). In particular they explore how bi-
asing the client selection towards those whose local loss is
higher archieves better error convergence. In particular the
paper introduces the power of choice client selection and it
is managed in two steps:

• a non-biased client selection by choosing d clients
within the entire client pool, creating the client set A

• a biased client selection by choosing m ≤ d clients
having the highest local loss within the client set A

As elaborated in the cited paper, a larger d value indicates
a bigger selection skew, thus d increases error convergence
speed at the risk of higher error floor.

For out set of experiments we kept m = 10 and changed
d = {20, 50, 80, 100}. As shown in table 1, it is evident
how the power of choice client selection archieves greater
results when hyperparameter d is appropriately chosen, yet
increasing it too much leads to a non negligible higher error
floor. In fact, while having d = 20 increases the perfor-
mance by about 1% in both IID and nIID scenarios, fur-
ther increasing d to higher values not only does not help in
boosting performances, but it can yield lower performances
than the unbiased client selection.

5



Table 1. Power of choice results

d = 20 d = 50 d = 80 d = 100 random

nIID 0.8588 0.8571 0.8536 0.8520 0.8487
IID 0.8623 0.8569 0.8566 0.8499 0.8535

6.2. Server-side momentum

Referring back to the experiments conducted by [6], [7]
and noticing a slow initial growth in the accuracy of the
model, it was decided to try implementing the momentum
server, which should accelerate the initial growth of the
model. Therefore, instead of simply performing an aggre-
gation at the end of each round, it was decided to take the
weights obtained from each client to calculate a server step,
performed with lr = 1 and momentum {0.5, 0.6, 0.7, 0.9}.
By hyperparameter tuning the selected server momentum
(sm) was sm = 0.6.

It was seen that the results obtained at the end of the
1000 standard rounds were slightly better than those ob-
tained without using the momentum server (0.859 vs. 0.849
obtained without using sm). Still, difference can be seen
in the achievement of convergence speed between the two
settings.

In fact, in FIG. 7 the results are shown taking into con-
sideration only 100 rounds and testing the validation every
10. At the end of the 100 rounds, tests were also carried out
on the test set considering both settings, obtaining a very
considerable difference: while 0.755 was obtained with the
normal method, with the momentum server a final accuracy
of 0.807 (+5.2%) was obtained.

Figure 7. Comparison accuracy assessed every 10 rounds on the
validation set with and without the use of the momentum server

7. Domain generalisation
In this section, the main problems associated with Do-

main Generalisation (DG) in a Federated environment will
be shown and analysed and FedSR will be seen in depth.
To do this, the two datasets RotatedFEMNIST and then
DGFEMNIST are taken into consideration. For each of
these datasets, tests were carried out either by transform-
ing only 1000 clients out of the almost 3500 or so, follow-
ing [14], or by transforming all of them.

7.1. Centralised and Federated Baseline

To better understand how federated suffer more from the
domain shift problem than a centralised environment, some
tests were carried out. For these experiments, the transfor-
mations (both RotatedFEMNIST and DGFEMNIST) have
been performed on the clients, they are divided into train,
validation and test sets and the normal process is carried
out. We are still not talking about DG since we train on all
domains.

It is emphasised that since most of the clients have no
transformation applied in (1000), the results are not too far
from the normal FEMNIST. For this reason, the same base-
line was also made by transforming all clients. As expected,
in this case the accuracies obtained are lower, as there is a
greater domain shift between all clients. The results ob-
tained can be seen in the table 2.
Table 2. Centralised and Federated Baseline with RotatedFEM-
NIST and DGFEMNIST

RF (1000) RF (ALL) DGF (1000) DGF (ALL)

Centralised 0.878 0.846 0.880 0.867
Federated 0.851 0.802 0.863 0.841

7.2. Leave-one-domain-out
With the Leave-one-domain-out strategy, the focus is

shifted to DG. This is inspired by and described in more
detail in Sec. 4.2 of [14].

In Leave-one-domain-out one of the six transformations
applied is disregarded from the dataset in the training, vali-
dation and test phase. At the end of the rounds, after carry-
ing out the same procedure as in the baseline on all clients
minus those with the transformation excluded, is a second
test carried out on the left-out domain, never before seen by
the federated model, as per the definition of DG.

The results regarding the accuracy obtained with each
left-out domain for both datasets can be seen in section 9.
As can easily be imagined, the results obtained vary greatly
depending on the left-out domain, having higher accuracy
when the domain is ’similar’ to those used in the training,
and lower ones moving away from the domains used in the
training. This can be easily observed in Fig. 8, where, as
the rotation increases, the accuracy decreases.

Figure 8. Accuracies obtained for each left-out domain using Ro-
tatedFEMNIST dataset
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7.3. Federated Simple Representation (FedSR)

The FedSR [14] method attempts to approach the prob-
lem of domain generalisation in the FL setting. To achieve
this, the authors of the above algorithm propose to learn
a ”simple representation” of the data, through the use of
two regularisation methods, specifically the L2 regulariser,
named lL2R, and the conditional mutual information, be-
tween the data and the representation given the label, regu-
lariser, named lCMI . The final local objective function of
each client i is:

fi + αL2RlL2R
i + αCMI lCMI

i (11)

These two regularisers aim to limit the amount of informa-
tion the data representation can contain, in order to ignore
spurious correlations and lead to a better generalisation of
unseen target domains, while at the same time respecting
FL principles, as there is no exchange of data between dif-
ferent clients. By doing hyperparameter tuning the selected
L2R coefficient is αL2R = 0.01 and the selected CMI coef-
ficient is αCMI = 1e-4. The results regarding the accuracy
obtained with each left-out domain for both datasets can be
seen in the tables in section 9.

8. Proposed method
In order to implement equation (10) the feature extrac-

tor are connected through a gradient reversal layer (GRL),
which leaves the inputs unchanged during forward propa-
gation and reverses the gradient during backpropagation by
multiplying it by a negative scalar. In our particular case we
mantained the CNN architecture described in section 5 and
used the last layer prior to the classification as feature rep-
resentation layer (having 2048 features). The domain clas-
sifier branch was formed by two fully connected layers: go-
ing from 2048 features to 1024 and then to n domains. Its
negative loss, which was backpropagated to the featuriser,
was also multiplied by a regularisation factor λ = 0.01. An
example of DANN architecture implementation can be seen
in fig. 8

Applying DANN to the federated setting came with a
new set of challanges, particularly regarding the distance of
the domains and their distribution among clients. This is
why a total of 4 different settings were tested, using the
two datasets (RotatedFEMNIST and DGFEMNIST), and
for each of which we first transformed only 1000 clients
following [14], and then all clients for the same reasons as
shown in 7.1.

9. Results
In the following section, the main results obtained from

the experiments are reported and commented on, compar-
ing FedAvg, FedSR and our FedDANN in the leave-one-
domain-out framework.

As can be seen, on average DANN performs better in
these Domain Generalisation problems.

In particular, as expected, the results are even better
when dealing with larger domain shifts and when more
clients are being transformed. In fact, in these environments
mentioned above, an adversarial approach to Domain Gen-
eralisation and consequently feature extraction independent
from the domain is more effective.

Given the results obtained, to ensure that our DANN was
working correctly, the Domain Classifier was studied in de-
tail and compared with the Label Classifier.

Plotting the loss of both classifiers, the expected results
were obtained: while the classifier loss continued to fall the
domain classifier loss initially decreased, then it bounced
off and started zigzagging around a certain stable value.
This happened as it initially understood how to classify the
domains, so the featuriser had to adapt its representations in
order to make them more domain-invariant.

Furthermore, an even more interesting result can be seen
in Fig. 11. In fact, during the training phase, domains were
classified by our network, and it is possible to see how the
results obtained are random guesses. There is an average
accuracy of 1/5 = 0.2 when there are 5 different domains

Table 3. RotatedFEMNIST (1000) - L1O accuracies

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ Avg.

FedAvg 0.891 0.836 0.761 0.725 0.710 0.527 0.741
FedDANN 0.888 0.842 0.756 0.723 0.711 0.543 0.744

FedSR 0.876 0.811 0.724 0.696 0.664 0.473 0.707
Centralised 0.886 0.848 0.778 0.730 0.716 0.551 0.752

Table 4. RotatedFEMNIST (ALL) - L1O accuracies

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ Avg.

FedAvg 0.681 0.784 0.779 0.774 0.795 0.605 0.736
FedDANN 0.685 0.784 0.779 0.776 0.795 0.605 0.737

FedSR 0.658 0.753 0.757 0.752 0.763 0.579 0.710
Centralised 0.711 0.795 0.796 0.825 0.827 0.704 0.786

Table 5. DG FEMNIST (1000) - L1O accuracies

D1 D2 D3 D4 D5 D6 Avg.

FedAvg 0.895 0.775 0.079 0.245 0.826 0.146 0.494
FedDANN 0.895 0.801 0.100 0.233 0.826 0.133 0.498

FedSR 0.883 0.702 0.037 0.264 0.813 0.153 0.475
Centralised 0.881 0.735 0.073 0.330 0.855 0.225 0.517

Table 6. DG FEMNIST (ALL) - L1O accuracies

D1 D2 D3 D4 D5 D6 Avg.

FedAvg 0.841 0.701 0.015 0.232 0.820 0.126 0.456
FedDANN 0.842 0.708 0.051 0.232 0.822 0.131 0.464

FedSR 0.825 0.632 0.043 0.221 0.787 0.134 0.440
Centralised 0.864 0.707 0.053 0.267 0.753 0.179 0.471
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Figure 9. An example of DANN architecture implementation

in the training phase, and 1/6 = 0.16 when there are 6 do-
mains. It is emphasised that with left-out 0 the domains be-
ing trained are still 6 when transforming 1000 clients since
all images belonging to the non-transformed clients are nat-
urally the same as those in which a rotation of 0 degrees is
applied.

Figure 10. Smoothed label classifier loss and domain classifier
loss (smoothing factor 0.9) taken from DGFEMNIST (1000)

Figure 11. Smoothed domain accuracy get in RotatedFEMNIST
with 1000 clients transformed

10. Conclusions
The general analysis of the Federated Learning frame-

work, especially related to Domain Generalisation issues,
has been analysed quite comprehensively within the paper.

Furthermore, the use for the first time, as far as we know, of
a non-generative adversarial network within this framework
not only proved to be interesting but also led to satisfactory
results exceeding both the results obtained with the normal
FedAvg and FedSR.

Obviously, this improvement is achieved in exchange for
an additional piece of information, related to the fact that it
is necessary to know in advance the domain of the image
one wishes to classify. This additional information, on the
other hand, is easily obtainable in certain circumstances, for
example, when a photo is taken, some information is saved
with it that can be used in the categorisation of the domain,
such as the time and place where the photo was taken.

In addition, there may be some particular environments,
not considered within our paper, where it is possible to use
our DANN architecture in some other way. In fact as al-
ready anticipated this architecture is designed for Domain
Alignment problems, which can still occur in the Federated
environment. An example may be in the medical domain:
Hospitals serve as establishments harboring an abundance
of patient data, critical for predictive healthcare endeav-
ors (Domain Adaptation challenge). Nevertheless, hospi-
tals operate within the confines of rigorous privacy proto-
cols, which elucidates the widespread adoption of Federated
Learning [4].

In addition, more complex architectures could have been
tried for conducting the experiments and more tests could
have been performed but we were limited by the available
computing power. In fact, all tests were carried out with a
very simple CNN, and even in the case of the DANN archi-
tecture we merely added a bifurcation to our starting CNN,
adding the domain classifier, without performing a careful
analysis on the network itself.

To conclude, the results obtained overall are still very
satisfactory, although there is certainly still room for im-
provement. In fact, we hope that this could be an interesting
starting point for evaluating this methodology applied to the
federated learning framework.
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Appendix A - More examples of DGFEMNIST
Other transformed images have been included in this appendix to allow the reader a better understanding of them, espe-

cially of the transformation linked to random translation and rescaling.

Figure 12. Example of all the transformations of DGFEMNIST on the number ’0’

Figure 13. Example of all the transformations of DGFEMNIST on the letter ’G’

Figure 14. Example of all the transformations of DGFEMNIST on the letter ’d’
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Appendix B - Overall Accuracies obtained on test sets of Leave-one-domain-out experiments
In the following appendix, all results obtained on the test set at the end of 1000 rounds during the leave-one-domain-out

experiments have been reported for completeness.
As can be seen, the results obtained are on average much higher and similar to those obtained with the baseline without

any left-out since we are not in a domain generalisation problem.

Table 7. RotatedFEMNIST (1000) - Test set Accuracies

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ Avg.

FedAvg 0.848 0.847 0.848 0.850 0.854 0.855 0.850
FedDANN 0.842 0.846 0.846 0.849 0.854 0.854 0.849

FedSR 0.833 0.866 0.829 0.835 0.839 0.838 0.840
Centralised 0.878 0.880 0.880 0.880 0.882 0.882 0.880

Table 8. RotatedFEMNIST (ALL) - Test set Accuracies

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ Avg.

FedAvg 0.671 0.790 0.803 0.807 0.806 0.807 0.781
FedDANN 0.674 0.790 0.805 0.806 0.806 0.807 0.781

FedSR 0.646 0.756 0.774 0.778 0.780 0.778 0.752
Centralised 0.718 0.830 0.849 0.857 0.857 0.855 0.828

Table 9. DG FEMNIST (1000) - Test set Accuracies

D1 D2 D3 D4 D5 D6 Avg.

FedAvg 0.856 0.860 0.855 0.858 0.861 0.862 0.859
FedDANN 0.857 0.859 0.857 0.859 0.859 0.859 0.858

FedSR 0.844 0.843 0.843 0.849 0.849 0.850 0.846
Centralised 0.879 0.882 0.880 0.878 0.882 0.887 0.881

Table 10. DG FEMNIST (ALL) - Test set Accuracies

D1 D2 D3 D4 D5 D6 Avg.

FedAvg 0.827 0.837 0.839 0.847 0.828 0.841 0.837
FedDANN 0.828 0.838 0.841 0.848 0.830 0.842 0.838

FedSR 0.810 0.818 0.818 0.830 0.807 0.823 0.818
Centralised 0.855 0.868 0.871 0.871 0.868 0.833 0.861

11


	. Introduction
	. Related work
	. Problem Statement
	. FedAvg algorithm
	. Statistical heterogeneity
	. Domain generalisation
	. Domain adversarial regularisation

	. Datasets Used
	. EMNIST
	. FEMNIST
	. RotatedFEMNIST
	. DGFEMNIST

	. Experiment setting and benchmarks
	. Centralised Baseline using EMNIST
	. Federated Baseline

	. Statistical Heterogeneity
	. Smart client selection
	. Server-side momentum

	. Domain generalisation
	. Centralised and Federated Baseline
	. Leave-one-domain-out
	. Federated Simple Representation (FedSR)

	. Proposed method
	. Results
	. Conclusions

