
Analysis of Sim-to-Real strategies with Domain
Randomization techniques

1st Simone Borella
s317774

Polytechnic University of Turin
Engineering and Artificial Intelligence

2nd Florentin Cristian Udrea
s319029

Polytechnic University of Turin
Data science and Engineering

3rd Matteo Zulian
s310384

Polytechnic University of Turin
Automation and Intelligent Cyber-Physical Systems

Abstract—Sim-to-real transfer has been a challenge in robot
learning literature till these days. The use of simulation envi-
ronments for training robots offers advantages such as cost-
effectiveness, safety, and scalability. Simulated environments
allow for extensive exploration of diverse scenarios and enable
the learning of complex tasks. In this paper, we will explore
the challenges associated with training a robot in a simulated
environment with reinforcement learning techniques and trans-
ferring the policy to the real world, filling the reality gap
between simulated model and real model. We are focusing on
the gym Hopper environment, employing a sim-to-sim technique
to emulate sim-to-real applications. We are going to analyze the
inherent drawbacks of this approach and show two solutions:
Uniform Domain Randomization (UDR) and Bayesian Domain
Randomization (BayRn).

I. INTRODUCTION

During the past years, Robots have found a place in an
increasing number of fields and applications. They improved
in strength, speed, accuracy and their cost grew accordingly.
To apply reinforcement learning in robotics, safe exploration
becomes a key issue of the learning process. Robots are now
valuable and expensive machines, not suitable for training, due
to the high maintenance and repairing costs. Learning in a
real environment can also be time consuming since a human
operator may be required to manually reset an episode.

Furthermore reinforcement learning methods require vast
amounts of data to be effectively trained. The more a task is
complex, in terms of observation and action dimensionality,
or exploration difficulty, the more experience is required.
Complex tasks can easily require days or weeks of experience
data to be solved. Acquiring such amounts of experience
on real robotic systems is impractical. Keeping a complex
robotic system running for such lengths of time is unfeasible,
additional infrastructure for managing the environment setup
are required, and untrained policies can potentially damage the
robot or the environment.

For the above reasons, it is common practice to conduct
training on an approximation of the real model in a simulated
environment. The learned policy is subsequently transferred
and applied to the actual real application. This kind of method
is called sim-to-real transfer and it’s widely used in robotics.

The core issue with simulation training is the reality gap,
the discrepancy between the characteristics of the simulated
environment and those of the real one.

Fig. 1. Simulated and real environments in sim-to-real application

The reality gap is due to some important aspects of sim-
ulated environments. First of all simulations involve mathe-
matical models of physical phenomena. While these models
can be sophisticated, they might not perfectly represent the
complex and dynamic nature of the real world. Deviations in
physics modeling can lead to inaccuracies in predicting how
objects move, interact, or respond to external forces. Simulated
environments often simplify or overlook certain environmental
factors, and some factors could be unknown. Finally they often
rely on approximations of real-world sensors and actuators.

The problem of transferring control policies from simulation
to the real world can be viewed as an instance of Domain
Adaptation (DA), where a model trained in a source domain
is transferred to a target domain.

In the next sections we present first the problem formu-
lation and notations to introduce two sim-to-real techniques
(thus Domain Adaptation techniques) used to mitigate the
reality gap between simulation and reality: Uniform Domain
Randomization (UDR) and Bayesian Domain Randomization
(BayRn).

In the subsequent sections we focus then on analysing
the application of these techniques. In our experiments we
simulated the sim-to-real transfer task in a sim-to-sim scenario,
where a discrepancy between source (training) and target
(testing) domains is manually injected. The MuJoCo Hopper
environment is employed as case study to introduce evidences
of the discrepancies between the real world and simulations.

In these sections we are going to describe the experimental
steps and show results obtained enforcing the main character-
istics of these strategies.

II. PROBLEM FORMULATION

The following techniques we are going to describe require
a slightly different formulation of the Markovian Decision
Process (MDP), since parameters of the source domain model
are chosen randomly with a certain parameterized stochastic
distribution.

The treated MDP system is defined by a tuple
(S,A, P,R, γ, ξ, s0), where:

S is the finite set of states
A is the finite set of actions
P is the transition probability function
R is the reward function
γ is the discount factor
ξ are the environment parameters
s0 is the initial state

The environment is instantiated through its parameters ξ
which are assumed to be random variables distributed accord-
ing to the following probability distribution parameterized by
φ.

ξ ∼ ν(φ)

The initial state s0 is drawn from an initial state distribution.

s0 ∼ µ0,ξ(s0 | ξ)

The transition probability function Pξ gives the probability
of transitioning from one state to another after taking a certain
action. It can be written as:

Pξ : Sξ ×Aξ × Sξ → R+

Pξ(s
′ | s, a) = P{St+1 = s′ | St = s,At = a}

The reward function R defines the immediate reward re-
ceived after taking an action in a certain state:

R : Sξ ×Aξ → R

R(s, a) 7→ r

The objective in an MDP is to find a policy π, which is a
mapping from states to actions, expressed as a distribution
of actions over states. The policy is parameterized with θ
parameter.

πξ : Sξ → ∆(Aξ)

πξ(a|s; θ) = P(At = a|St = s)

The goal is to find the optimal policy π∗ξ that maximizes
the expected cumulative reward over time (find the optimal
parameters θ∗ξ which characterizes the policy).

Ĵξ(θ, s0) = E

[∞∑
t=0

γtR(st, at) | θ, s0

]

III. UNIFORM DOMAIN RANDOMIZATION

Domain Randomization (DR) is a complementary class
of techniques for Domain Adaptation (DA) that is particu-
larly well suited for simulations. With domain randomization,
discrepancies between the source and target domains are
modeled as variability in the source domain. Uniform Domain
Randomization (UDR) approach involves the randomization
of environmental parameters using uniform distributions. With
this strategy we are able to create a variety of simulated en-
vironments with randomized properties and train a model that
works across all of them, generalizing the policy knowledge.

For each training episode new parameters are sampled from
a uniform distribution, in a certain interval [a, b], described as
follows:

ξ ∼ ν(φ) ∼ U(a, b) =

{
1
b−a if a ≤ x ≤ b
0 otherwise

where φ = {a, b} is the set of the uniform distribution
parameters.

An important aspect of this strategy is the choice of param-
eters intervals. First of all the choice of these parameters is
based on an assumption of the uncertainty of the parameter and
its real boundaries (e.g. a mass parameter couldn’t be a nega-
tive value). Furthermore, as the range of a parameter expands,
the task of finding an optimal policy becomes increasingly
challenging. A broader parameter range introduces a greater
diversity of scenarios and potential configurations, requiring
the optimization process to navigate a larger and more complex
solution space. Therefore, when addressing UDR, there exists
a trade-off between robustness to variability in environmental
parameters and the maximum expected cumulative reward
achieved.

Algorithm 1 describes the training procedure with DR for a
model applied to the simulated source domain. UDR algorithm
can be easily deducted using ξ ∼ ν(φ) ∼ U(a, b).

Algorithm 1: Domain Randomization
Data: Number of episodes: num episodes,

Parameters distributions: ξ,
RL algorithm train ep

Result: Learned policy: π(θ∗)
1 for num episodes do
2 Sample model parameters:
3 ξ ∼ ν(φ)
4 Rollout the episode with policy (πξ(θt))
5 Train policy πξ with new model parameters:
6 πξ(θt+1)← RL algorithm train(ξ, θt)

IV. BAYESIAN DOMAIN RANDOMIZATION

A. Introduction

Drawing a new set of parameters for each training episode
with a fixed distribution could be limiting in terms of conver-
gence and robustness of the policy. Furthermore the policy
obtained is suboptimal since the reward is evaluated only
on the source domain, not considering the behaviour of the
policy on the target domain during the training phase. In
addition involving fixed distributions means that there is a prior
assumption on the parameters domain.

Bayesian Domain Randomization (BayRn) addresses these
limitations by dynamically adapting parameter distributions
during the learning process, considering the policy perfor-
mance in the target environment.

BayRn employs Bayesian Optimization to explore the con-
figuration space of source domain distribution parameters. This
approach aims to derive a policy that maximizes the cumula-
tive reward (objective function), enabling the adaptation of
distributions throughout the policy optimization process.

B. Bayesian Optimization with Gaussian Processes

Bayesian Optimization is a powerful technique for optimiz-
ing a complex and expensive objective function.

f : X → R

Bayesian Optimization is widely used in applications like
hyperparameter tuning and automated machine learning. In
these contexts, it facilitates the iterative exploration of pa-
rameter configurations, with each training iteration aimed at
discovering potentially better-performing parameter sets.

It exploits a probabilistic model, often based on Gaussian
Processes (GP), to model the unknown objective function and
guide the search towards promising regions, choosing the next
parameters to evaluate.

A Gaussian Process (GP) is a probabilistic model that
defines a distribution over functions. In the context of Bayesian
Optimization, Gaussian Processes are used to model the un-
derlying objective function.

f(x) ∼ GP(m(x), k(x, x′))

m : X → R

k : X ×X → R

where m is the mean function and k is the kernel function.
A distinctive feature of Bayesian Optimization is to use the

complete history of noisy function evaluations and not only a
subset of them.

The key to choose the new set of parameters is the ac-
quisition function, which tries to make this choice balancing
exploration and exploitation.

a : X → R

Some canonical acquisition functions are Expected Improve-
ment, Probability of Improvement and Upper Bound Confi-
dence.

Fig. 2. Bayesian Optimization Example: Gaussian Process representation
(top) and Acquisition Function (bottom).

The next query point is determined by maximizing the
acquisition function, which, in turn, maximizes the probability
of selecting parameters that lead to a more promising objective
function result.

C. BayRn formulation

In BayRn to improve dynamically the choice of parame-
ters distributions the objective function can be described as
follows:

f : Φ→ R

f(φ) ∼ Ĵreal(θ∗(φ))

In this context, φ represents the set of distribution param-
eters, θ∗ denotes the set of parameters defining the optimal
policy, and Ĵreal is the estimated discounted reward achieved
by the optimal policy π(θ∗) on the target domain. This policy
is discovered during model training, where randomized param-
eters are sampled from distributions described by ξ ∼ ν(φ).

The Bayesian Optimization is employed here to evaluate
the expected discounted reward on the real domain trained
with parameters drawn from distributions parameterized with
parameters φ.

The problem of source domain adaptation based on returns
from the target domain can be expressed in the following two
formulations:

φ∗ = arg max
φ

(Jreal(θ
∗(φ))) (1)

θ∗(φ) = arg max
θ

(Jξ∼ν(φ)(θ, ξ)) (2)

In this way this algorithm is able to find the next set
of domain distribution parameters φ∗ that maximizes the
discounted reward on the real-world target domain.

Algorithm 2: Bayesan Domain Randomization
Data: Parameters distributions: ξ, Parameter space:

Φ ∼ Pn, P = [φ−bound, φ
+
bound],

RL algorithm, Gaussian Process: GP ,
Acquisition function a, Hyperparameters: Jsucc,
nmax iter, ninit, nt

Result: Learned policy: π(θ∗), Domain distribution
parameters: φ∗

1 Initialization phase
2 D = {}
3 for ninit do
4 Random parameters sample:
5 φ← U(φ−bound, φ

+
bound)

6 Get best policy parameters with a training process
with domain randomization (Algorithm 1):

7 θ∗ ← DR(ν(φ∗), RL algorithm)
8 Evaluation of the policy on target domain:
9 Ĵreal(θ

∗)← 1
nt
·
∑nt

i=1 Jreal i
10 Extend the data set:
11 D = D ∪ {φ∗, Ĵreal(θ∗)}
12 while Jreal(θ∗) < Jsucc and niter < nmax iter do
13 Get next source domain distribution parameters:
14 φ∗ ← argφ max(a(φ,D))
15 Get best policy parameters with a training process

with domain randomization (Algorithm 1):
16 θ∗ ← DR(ν(φ∗), RL algorithm)
17 Evaluation of the policy on target domain:
18 Ĵreal(θ

∗)← 1
nt
·
∑nt

i=1 Jreal i
19 Extend the data set and update the GP posterior

distribution:
20 D = D ∪ {φ∗, Ĵreal(θ∗)}
21 GP (m, k)← GP (m, k|D)

Fig. 3. Hopper Environment

V. HOPPER ENVIRONMENT

The hopper is a two-dimensional one-legged figure that
consist of four main body parts - the torso at the top, the
thigh in the middle, the leg in the bottom, and a single foot
on which the entire body rests. The body masses values are
expressed in Table II. The goal is to make hops that move in
the forward (right) direction by applying torques on the three
hinges connecting the four body parts. This environment is
a part of the OpenAI Gym toolkit, which provides a variety
of environments for developing and testing RL algorithms, it
has been used as a standard control benchmark in a variety of
papers.

Observations consist of positional values of different body
parts of the hopper, followed by the velocities of those indi-
vidual parts (their derivatives) with all the positions ordered
before all the velocities.
The observation space is 11-dimensional, continuous and
unbounded.
The action space is also continuous, but bounded between
[-1, 1]. An action represents the torques applied at the hinge
joints. Since there are four masses and three joints the Action
Space is 3-dimensional.

LB UB DIM type
Action Space -1.0 1.0 3-D float32

Observation Space -inf inf 11-D float64

TABLE I
HOPPER ENVIRONMENT SPACES

The reward consists of three parts:
• healthy reward: Every timestep that the hopper is healthy

it gets a reward of fixed value healthy reward.

hr = healthy reward

• forward reward: A reward for hopping forward.

fr = fr weight · (xbefore − xafter)/dt

where dt is the time between actions. This reward is
positive if the hopper hops forward in the positive x-
direction.

• ctrl cost: A cost for penalizing the hopper if it takes
actions that are too large.

cc = cc weight ·
∑

(action2)

The total reward returned is given by:

reward = hr + fr − cc

VI. EXPERIMENTS

A. Approach

In order to replicate the sim-to-real scenario within the
Hopper environment, we adopt a sim-to-sim approach. Specif-
ically, we intentionally decrease the torso mass of the hopper
by 1 kg in the simulated environment, strategically emulating
the reality gap. In this context, the simulated environment is
referred to as the source domain, while the real environment
is denoted as the target domain.

Source (Kg) Target (Kg)
Torso mass 2.534 3.534
Thigh mass 3.926 3.926
Leg mass 2.714 2.714
Foot mass 5.089 5.089

TABLE II
HOPPER MASSES

The challenge is to perform Domain Adaptation with Do-
main Randomization techniques focusing only on retaining
unchanged mass parameters. Importantly, we abstain from
changing the torso mass in order to emulate non-modelable
real-world complexity. In sum the objective is to discover an
optimal policy that enhances the adaptability of simulation to
real-world scenarios through effective domain randomization.

The PPO reinforcement learning algorithm provided by the
stable-baselines3 python library is employed in the following
procedures, with 1 million total time steps .

B. Hyperparameters tuning

To get the best performance from the algorithms outlined
in these papers, an analysis to identify the most effective pair
of PPO hyperparameters (γ, α) to use for our problem was
needed, where γ is the discount factor, while α is the learning
rate.

We trained and tested the hopper in the source environment
with four different values for γ and six for α. More precisely
we examined four constant gamma values, three constants
learning rates and three dynamic learning rates, which decrease
over time, in order to have more precision during the last
episodes. In particular we used an exponential schedule (that
decreases from the highest constant value used, to the lowest
exponentially during training), a linear schedule (that also
decreases from highest constant to lowest during training, but
linearly) and a step schedule (which halves its learning rate
every 20% of the learning procedure). The various learning
rates can be seen in Figure 4.

The results of the tests are shown in a heatmap where it’s
easy to see that the best pairs (γ, α) were (0.99, 0.0003)
and (0.99, exp). Further investigations where made to choose
the best between the two. We trained five more runs with
both models. Finally we chose the pair (0.99, exp) because it
yielded better results with less variance during training (as
it can be seen in Figure 6). For all the following testing
and training it’ll be implicit that we used these pair of
hyperparameters.

Fig. 4. Learning rate schedules tested (from 0% to 100% of training progress).
’step’ is a dynamic learning rate that halves every few episodes starting from
0.003. ’linear’ and ’exp’ are two learning rate curves that decrease linearly
and exponentially.

Fig. 5. Heatmap of tests gathering the results of the hyperparameter tuning,
where on the x-axis are reported the learning rates while on the y-axis the
gammas

Fig. 6. Learning curves (running average on 200 episodes) for five runs of
(0.99,0.0003) in blue; and five for (0.99, exp) in red. The ticker lines are the
mean over the five curves, while the semi-transparent are the 2 · σ (standard
deviation), representing the 95% probability of finding other curves in that
space. Generally the pair (0.99, exp) performed better.

C. Lower and Upper bounds

To evaluate the effectiveness of the knowledge transferring
of subsequent strategies, a lower bound and an upper bound
were evaluated. In order to evaluate the lower bound a policy
is learned on the source domain and then transferred and tested
on the target domain. To ensure completeness, we also present
the testing results of this policy on the source domain. The
upper bound is then defined learning a policy from the target
domain and testing the policy in the same domain.

D. UDR

For this experiment we added Uniform Domain Random-
ization to the Hopper environment introduced in the previous
sections.

As the source domain is randomized, mass parameters
(Thigh, Leg and Foot) are represented as parametric uniform
distributions.

ξ ∼ U(a, b)

Different strategies were used to define a and b distribution
boundaries. Let’s call the target masses mt, which are assumed
to be the mean µ of our uniform distributions, ensuring that
a > 0 and b > 0, since they are masses.

As a first strategy, defined a ∆m (equal for all parameters),
we describe the uniform randomization interval by considering
the neighborhood of mt.

ξ ∼ U(mt −∆m,mt + ∆m)

As a second strategy the boundaries distance from the mean
are defined by a percentage p (equal for all parameters).

ξ ∼ U(mt(1− p),mt(1 + p)), p > 0

Various configurations of uniform distribution boundaries
were tested, and for each configuration a policy is computed
on the randomized source domain. Subsequently policies are
tested on both randomized source and target domain. In
particular the parameters used were:

∆m ∈ {1, 5, 10}

p ∈ {0.10, 0.5, 0.95}

E. BayRn

Finding the optimal set of distribution parameters φ in do-
main randomization can be a challenging and time-consuming
task, especially when performed manually.

To streamline this process, Bayesian Optimization can be
employed. This approach automates the tuning of distribution
parameters by iteratively training new policies, each time using
the most promising set of parameters φ∗ identified through
historical trials and their relative testing results on the target
domain (modeled by a Gaussian Process, denoted as GP).

The Gaussian Process GP is modeled as seen before to
approximate the discounted reward Ĵreal(θ∗(φ)) for each set
of distribution parameters φ already tested.

f(φ) ∼ GP(m(φ), k(φ, φ′)) ∼ Ĵreal(θ∗(φ))

To implement Bayesian Optimization, the BoTorch library is
employed, which incorporates the GPyTorch library internally.
Botorch deploys techniques for optimizing expensive black-
box functions, while GPyTorch plays a crucial role in shaping
the underlying Gaussian Process model. A crucial point of the
implementation is the choice of the acquisition function. Our
choice is the ExpectedImprovement (EI).

EI(x) = E [max(f(x)− f(x∗), 0)]

where x ≡ φ is the candidate point in the parameter space,
and x∗ ≡ φ∗ is the current best point known so far.

Uniform Domain Randomization
The initial strategy involved enhancing the Uniform Domain

Randomization (UDR) approach, as previously described, by
automating the tuning of distribution parameters φ.

Given the presence of three mass parameters in this sce-
nario, the complete set of distribution parameters includes
∆m for each mass. ∆m represents the distance of the range
extremes from the original value in the source domain.

ξ ∼ ν(φ) ∼ U(a, b) ∼ U(mt −∆m,mt + ∆m)

φ = {∆m}

Φ = {φ0, φ1, φ2} = {∆m0,∆m1,∆m2}, ∆mi ∈ [0.1, 5.0]

Gaussian Domain Randomization
As a second approach, we aimed to conduct Domain

Randomization shaping the model parameters as Gaussian
distributions. In this iteration, we provided increased flexibility
to Bayesian Optimization by allowing greater freedom in
selecting the mean parameter µ.

ξ ∼ ν(φ) ∼ N (µ, σ2)

φ = {µ, σ}

Φ = {φ0, φ1, φ2} = {µ0, µ1, µ2, σ0, σ1, σ2}

µi ∈ [0.1, 10.0], σi ∈ [0.1, 6.5]

VII. RESULTS AND DISCUSSION

A. Lower and Upper bounds

The outcomes of the evaluations described in the above
section are summarized in Table III, providing mean rewards.

Training domain Testing domain Mean Reward
Source Source 1619.7
Source Target 1019.2
Target Target 1645.0

TABLE III
LOWER AND UPPER BOUNDS TESTING RESULTS

Optimal performance is achieved when training and testing
the agent within the same domain. While this is often unfea-
sible in reality due to practical constraints outlined earlier in

Fig. 7. The mean reward of the three combinations of training-testing in
different domains, saving for later plots the lower (black) and the upper (red)
bounds.

this paper, simulating a sim-to-real scenario with sim-to-sim
allows us to conduct both training and testing in the target
domain, thereby establishing an upper bound.

On the other hand, training on the source domain and testing
on the target domain yields inferior results, serving as a lower
bound for the problem. In this case, the agent’s performance
suffers because the torso mass used during testing is 1 kg
heavier than the one it was trained with, thereby increasing
the difficulty of the task.

Figure 7 and Table III displays the upper and lower bounds
of this problem with two lines, which will serve as a bench-
mark for comparing the subsequent results in this paper.

B. UDR

UDR aims to enhance robustness against parameter vari-
ability, but it does so at the expense of performance. By
analysing the bar-graph representation (Figure 8) where, for
each randomization parameter, the test results on the target
domain are shown on the left in dark blue, while on the right
in light blue is shown the results of the training on the source
domain.

In general the larger the sampling interval, the more the
algorithm needs to adapt to accommodate a wider range of
possible parameters. This behavior can be seen in the three
rightmost dark blue bars: the tests results decrease propor-
tionally as ∆m increases.

However when the algorithm runs with the proportional
interval, so using p, something interesting happens. Since the
masses are quite low (Table II) the interval with p = 10%
is not large enough to overcome the differences due to the
domain transfer, furthermore some randomization is made
during training, so its tests yields results that are even worst
than the lower bound previously found. On the other hand,
when p increases, the interval increases accordingly, leading to
a better randomization of the domain, subsequently increasing
the performances in the target domain; even matching the
upper bound with p = 95%.

The difference between ∆m and p analysis shows how
specifying a personalised interval for each mass noticeably
increases the domain adaptation performance.

Fig. 8. UDR tests with different p and ∆m, and for each of them the tests
were made in the target domain (left, darker blue) and in their own training
domain (right, lighter blue)

C. BayRn

Uniform Domain Randomization
Figure 9 illustrates the testing results on the target domain

obtained during the Bayesian Optimization process. In this
experiment, we conducted 5 initial training processes with
randomly generated sets of distribution parameters, in order
to initialize the Bayesian Optimization model followed by 50
training iterations.

Analyzing the outcomes it is evident that both exploitation
and exploration phases were involved. Table IV presents the
top 5 results achieved during this experiment. An overall
increase in performance is observed, punctuated by exploration
phases. Notably, the diverse set of parameters representing the
best distribution parameters indicates that they were discov-
ered through effective exploration of the search space.

Surprisingly some of the best results perform better than the
upper bound.

Several training processes results to perform worse than the
set lower bound reward. This behaviour could be addressed
to the attempt to achieve more generalization on the derived
policy by setting randomization levels either too high or too
low. When randomization levels are set too high, the policy
tends to exhibit overall random behavior, making it challeng-
ing to learn appropriate responses across diverse scenarios.
Conversely, when randomization is too low, the policy not
only doesn’t generalise, but adds also noise in the training
process.

By carefully navigating through both exploitation and explo-
ration phases, the Bayesian Optimization process demonstrates

∆m0 ∆m1 ∆m2 Mean Reward Reward Variance
2.51 2.367 0.708 1714.3 50.3
3.427 0.541 2.327 1700.5 144.9
2.998 4.931 0.986 1646.2 85.7
1.13 1.713 2.643 1627.5 172.1
4.708 1.851 0.64 1625.2 50.8

TABLE IV
FIVE BEST RESULTS FOR THE HYPERPARAMETERS ∆m0 , ∆m1 AND ∆m2

(IN KG). MEAN AND VARIANCE GIVEN BY POLICY EVALUATIONS IN THE
TARGET DOMAIN

Fig. 9. BayRn Uniform Distribution parameters optimization process and
testing results on target domain. Green points represent randomly generated
initial parameters, red points represent Bayesian Optimization iterations.

its capability to progressively enhance performance, leading to
improved outcomes in the target domain.

Gaussian Domain Randomization

Figure 10 illustrates the testing results on the target domain
obtained during the Bayesian Optimization process. In this
experiment, we conducted 5 initial training processes with
randomly generated sets of distribution parameters, in order
to initialize the Bayesian Optimization model followed by 30
training iterations.

Table V shows the top 5 results obtained during this exper-
iment. Unlike the previous experiment, the resulting optimal
parameters exhibit remarkable similarity. This suggests that
despite some exploration phases, the process may have con-
verged to a local optimum without discovering a significantly
better solution. One possible explanation for this behavior
could be attributed to the huge size of the search space.
Bayesian Optimization, as per theory, tends to perform well
when the domain of the target function is relatively small.
However, in this scenario, the domain is X = R6, where
each dimension is a subset of the real numbers. Such a large
search space and dimensionality could pose challenges for
the optimization process, potentially leading to difficulty in
effectively exploring and exploiting the space to discover the
global optimum.

µ0 µ1 µ2 σ0 σ1 σ2 Mean R R Var
5.123 2.113 4.416 1.471 3.838 4.753 1723.0 137.7
5.264 1.828 4.563 1.604 3.62 4.574 1709.9 69.1
5.347 1.77 4.402 1.954 3.594 4.411 1703.0 33.2
5.351 1.926 4.408 1.746 3.717 4.608 1658.0 63.9
5.227 1.802 4.422 1.775 3.543 4.673 1641.3 9.1

TABLE V
FIVE BEST RESULTS FOR THE HYPERPARAMETERS µ0 , µ1 , µ2 , σ0 , σ1

AND σ2 (IN KG) OF THE THREE MASSES. MEAN AND VARIANCE OF THE
REWARD GIVEN BY POLICY EVALUATIONS IN THE TARGET DOMAIN

Fig. 10. BayRn Gaussian Distribution parameters optimization process and
tasting results on target domain. Green points represent randomly generated
initial parameters, red points represent Bayesian Optimization iterations.

VIII. CONCLUSION

We have introduced two methods to overcome the reality
gap inherent in sim-to-real transfer: UDR and BayRn with
Uniform Distribution and Gaussian Distribution.

Firstly we tried to apply UDR, which proved to be a
practical way to make the transferred policy more robust
against poor parameters tuning and noisy measures used in
simulations.

The effectiveness of general DR strategies is strongly af-
fected by the choice of probabilistic distributions to randomize
the source domain model.

BayRn propose a probabilistic way to find the best distri-
bution parameters iterating over training processes performed
with promising parameters, appropriately obtained thanks to
the internal Bayesian Optimization process.

Its strength lies in its ability to refine its best predictions
relying on some informations from the real world, thereby
yielding more precise results than manually tuned DR.

This method though is much more computationally demand-
ing since a full training phase is required at each iteration.
Furthermore, every iteration of BayRn requires testing in the
target domain, a task that may prove impractical in real-
world applications due to constraints such as time or economic
limitations. Additionally the real world usually do not present
a metric testing, thus doesn’t provide a reward feedback.

Nevertheless both UDR and BayRn techniques are valid
solutions for Sim-to-Real problems. While UDR needs manual
hyperparameter tuning, BayRn automatically discovers the
optimal ones, given an easy interaction and analysis of the
real environment.

REFERENCES

[1] Fabio Muratore, Christian Eilers, Michael Gienger, Jan Peters, ”Data-
efficient Domain Randomization with Bayesian Optimization”

